Abstract
The stability in the first approximation of the rotation of a satellite about a centre of mass is investigated. In the unperturbed motion the satellite performs, in absolute space, three rotations around the normal to the orbital plane in a time equal to two periods of rotation of its centre of mass in the orbit (Mercury-type rotation). Three cases of such rotations are considered: the rotations of a dynamically symmetrical satellite and a satellite, the central ellipsoid of inertia of which is close to a sphere, in an elliptic orbit of arbitrary eccentricity, and the rotation of a satellite with three different principal central moments of inertia in a circular orbit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.