Abstract

A method of solving the plane linear problem of a steady-state irrotational flow about a body under the free surface of a heavy fluid of finite depth is developed. The boundary-value problem is formulated for a complex perturbed velocity and is reduced to a singular integral equation relative to the intensity of a vortex layer that models the hydrofoil. The kernel of the equation is the exact solution of the corresponding boundary-value problem for a vortex of unit intensity. The equation is solved by the discrete-vortex method. The effect of the parameters of the problem on the hydrodynamic characteristics of the elliptical hydrofoil and the shape of the free surface are estimated numerically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.