Abstract

This paper presents a class of linear predictors for nonlinear controlled dynamical systems. The basic idea is to lift (or embed) the nonlinear dynamics into a higher dimensional space where its evolution is approximately linear. In an uncontrolled setting, this procedure amounts to numerical approximations of the Koopman operator associated to the nonlinear dynamics. In this work, we extend the Koopman operator to controlled dynamical systems and apply the Extended Dynamic Mode Decomposition (EDMD) to compute a finite-dimensional approximation of the operator in such a way that this approximation has the form of a linear controlled dynamical system. In numerical examples, the linear predictors obtained in this way exhibit a performance superior to existing linear predictors such as those based on local linearization or the so called Carleman linearization. Importantly, the procedure to construct these linear predictors is completely data-driven and extremely simple – it boils down to a nonlinear transformation of the data (the lifting) and a linear least squares problem in the lifted space that can be readily solved for large data sets. These linear predictors can be readily used to design controllers for the nonlinear dynamical system using linear controller design methodologies. We focus in particular on model predictive control (MPC) and show that MPC controllers designed in this way enjoy computational complexity of the underlying optimization problem comparable to that of MPC for a linear dynamical system with the same number of control inputs and the same dimension of the state-space. Importantly, linear inequality constraints on the state and control inputs as well as nonlinear constraints on the state can be imposed in a linear fashion in the proposed MPC scheme. Similarly, cost functions nonlinear in the state variable can be handled in a linear fashion. We treat both the full-state measurement case and the input–output case, as well as systems with disturbances/noise. Numerical examples demonstrate the approach.1

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.