Abstract
We consider the prediction of new observations in a general Gauss–Markov model. We state the fundamental equations of the best linear unbiased prediction, BLUP, and consider some properties of the BLUP. Particularly, we focus on such linear statistics, which preserve enough information for obtaining the BLUP of new observations as a linear function of them. We call such statistics linearly prediction sufficient for new observations, and introduce some equivalent characterizations for this new concept.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.