Abstract
We have recently proposed a molecular dynamics simulation scheme in which the time-consuming evaluation of non-bonding forces is periodically replaced by linear prediction of the latter from previous values [B. Brutovsky, T. Mülders, G.R. Kneller, J. Chem. Phys. 118 (2003) 6179]. For a simple molecular liquid, consisting of linear molecules with an internal vibrational degree of freedom, the method yields a speedup of up to 7 compared to conventional simulations. The hybrid simulation scheme preserves all essential structural and dynamical quantities. We show here that the linear predictor can be considered as an optimal integrator for finite time steps whose coefficients approach those of a discrete Taylor series if the simulation step tends to zero. The short time dynamics and the structure of the liquid are preserved for much longer periods if linear prediction is used instead of Taylor expansion to predict the non-bonding forces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.