Abstract

In this paper, the problem of designing linear precoders for fixed multiple-input-multiple-output (MIMO) receivers is considered. Two different design criteria are considered. In the first, the transmitted power is minimized subject to signal-to-interference-plus-noise-ratio (SINR) constraints. In the second, the worst case SINR is maximized subject to a power constraint. It is shown that both problems can be solved using standard conic optimization packages. In addition, conditions are developed for the optimal precoder for both of these problems, and two simple fixed-point iterations are proposed to find the solutions that satisfy these conditions. The relation to the well-known uplink-downlink duality in the context of joint transmit beamforming and power control is also explored. The proposed precoder design is general, and as a special case, it solves the transmit rank-one beamforming problem. Simulation results in a multiuser system show that the resulting precoders can significantly outperform existing linear precoders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.