Abstract

This paper presents a reformulation of the power flow problem in low-voltage dc (LVDC) power grids via Taylor's series expansion. The solution of the original nonlinear quadratic model is achieved with this proposed formulation with minimal error when the dc network has a well defined operative conditions. The proposed approach provides an explicit solution of the power flow equations system, which avoids the use of iterative methods. Such a characteristic enables to provide accurate results with very short processing times when real operating scenarios of dc power grids are analyzed. Simulation results verify the precision and speed of the proposed method in comparison to classical numerical methods for both radial and mesh configurations. Those simulations were performed using C++ and MATLAB, which are programming environments commonly adopted to solve power flows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call