Abstract

AbstractOrganic materials with carbonyl, azo, nitrile and imine moieties are widely used in lithium batteries. The solubility of these materials in battery electrolytes is an issue. Aggregation of the organic molecules can suppress the solubility, but the accessibility of lithium‐ion is hindered. Therefore, insoluble porous organic materials are desired. Herein, we synthesized a linear polymer with carbonyl and azo functionalities. Due to the presence of easily isomerizable azo moiety, a porous polymer was obtained. The polymer showed nano and micropores. The battery with the porous polymer showed an impressive specific capacity of 400 mA h/g at 0.2 A/g. If the battery is pre‐conditioned, the specific capacity increased to 615 mA h/g at the same current density. The post‐mortem analysis of the battery confirmed that the polymer didn't dissolve in the battery electrolyte. The control material is a small molecule with carbonyl and azo moieties that showed a poor specific capacity of 40 mA h/g indicating the necessity to have a hierarchically porous dual‐functional polymer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.