Abstract

A family of exact similarity solutions for inviscid compressible ablative flows in slab symmetry with nonlinear heat conduction is proposed for studying unsteadiness and compressibility effects on the hydrodynamic stability of ablation fronts relevant to inertial confinement fusion. Dynamical multi-domain Chebyshev spectral methods are employed for computing both the similarity solution and its time-dependent linear perturbations. This approach has been exploited to analyse the linear stability properties of two self-similar ablative configurations subjected to direct laser illumination asymmetries. Linear perturbation temporal and reduced responses are analysed, evidencing a maximum instability for illumination asymmetries of zero transverse wavenumber as well as three distinct regimes of ablation-front distortion evolution, and emphasizing the importance of the mean flow unsteadiness, compressibility and stratification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.