Abstract
A new definition for the dimension of a combinatorial t- (v,k,\lambda) design over a finite field is proposed. The complementary designs of the hyperplanes in a finite projective or affine geometry, and the finite Desarguesian planes in particular, are characterized as the unique (up to isomorphism) designs with the given parameters and minimum dimension. This generalizes a well-known characterization of the binary hyperplane designs in terms of their minimum 2-rank. The proof utilizes the q-ary analogue of the Hamming code, and a group-theoretic characterization of the classical designs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.