Abstract

This paper deals with the problem of linear parameter varying (LPV) switching attitude control for a near space hypersonic vehicle (NSHV) with parametric uncertainties. First, due to the enormous complexity of the NSHV nonlinear attitude dynamics, a slow–fast loop polytopic LPV attitude model is developed by using Jacobian linearisation and the tensor product model transformation approach. Second, for the purpose of less conservative attitude controller design, the flight envelope is divided into four subregions. For each parameter subregion, slow-loop and fast-loop LPV controllers are designed. By the defined switching character function, these slow–fast loop LPV controllers are then switched in order to guarantee the closed-loop NSHV system to be asymptotically stable and satisfy a specified tracking performance criterion. The condition of LPV switching attitude controller synthesis is given in terms of linear matrix inequalities, which can be readily solved via standard numerical software, and the robust stability analysis of the closed-loop NSHV system is verified based on multiple Lypapunov functions. Finally, numerical simulations have demonstrated the effectiveness of the proposed approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call