Abstract

This paper presents the dynamic feedforward control synthesis for linear parameter varying (LPV) systems. It is assumed that all system matrices are dependent on varying parameters, which are measurable with sensor or observable. The parameters have bounded variation rates. Parameter-dependent Lyapunov function is used for the feedforward control synthesis such that the robust stability is assured for all varying parameters at the time of the operation. The method is formulated in terms of linear matrix inequalities for LPV feedforward controller that guarantees the stability of the transfer matrix having \(L_{2}\)-gain. This compensator is designed by adding on the feedback controller in two degrees of freedom control configuration. This controller can be used for the disturbance attenuation or decreasing the tracking error. The numerical examples and simulations are given to provide the applicability of the proposed solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.