Abstract

This paper is concerned with the design of a self-scheduled current controller for doubly fed induction machines. The design is based on the framework of linear parameter-varying systems where the mechanical angular speed is considered to be a measurable time-varying parameter. The objective is to obtain robust dynamic performance for all variations of the mechanical rotor speed in a specified operating range. Employing the benefits of digital control, a continuous-to-discrete time transformation is utilized to replace the continuous-time current controller by an approximating discrete-time controller. Experimental results are provided to demonstrate the performance and robustness of the controlled system with respect to changes of the mechanical rotor speed and against stator voltage dips.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call