Abstract

AbstractLetEbe a computably enumerable (c.e.) equivalence relation on the setωof natural numbers. We say that the quotient set$\omega /E$(or equivalently, the relationE)realizesa linearly ordered set${\cal L}$if there exists a c.e. relation ⊴ respectingEsuch that the induced structure ($\omega /E$; ⊴) is isomorphic to${\cal L}$. Thus, one can consider the class of all linearly ordered sets that are realized by$\omega /E$; formally,${\cal K}\left( E \right) = \left\{ {{\cal L}\,|\,{\rm{the}}\,{\rm{order}}\, - \,{\rm{type}}\,{\cal L}\,{\rm{is}}\,{\rm{realized}}\,{\rm{by}}\,E} \right\}$. In this paper we study the relationship between computability-theoretic properties ofEand algebraic properties of linearly ordered sets realized byE. One can also define the following pre-order$ \le _{lo} $on the class of all c.e. equivalence relations:$E_1 \le _{lo} E_2 $if every linear order realized byE1is also realized byE2. Following the tradition of computability theory, thelo-degrees are the classes of equivalence relations induced by the pre-order$ \le _{lo} $. We study the partially ordered set oflo-degrees. For instance, we construct various chains and anti-chains and show the existence of a maximal element among thelo-degrees.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call