Abstract

We propose a linear optical quantum computation scheme using time-frequency degrees of freedom. In this scheme, a qubit is encoded in single-photon frequency combs, and manipulation of the qubits is performed using time-resolving detectors, beam splitters, and optical interleavers. This scheme does not require active devices such as high-speed switches and electro-optic modulators and is robust against temporal and spectral errors, which are mainly caused by the detectors' finite resolution. We show that current technologies almost meet the requirements for fault-tolerant quantum computation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call