Abstract

Thermal entanglement of a two-qubit Heisenberg chain in presence of the Dzyaloshinski-Moriya (DM) anisotropic antisymmetric interaction and entanglement teleportation when using two independent Heisenberg chains as quantum channel are investigated. It is found that the DM interaction can excite the entanglement and teleportation fidelity. The output entanglement increases linearly with increasing value of input one, its dependences on the temperature, DM interaction and spin coupling constant are given in detail. Entanglement teleportation will be better realized via antiferromagnetic spin chain when the DM interaction is turned off and the temperature is low. However, the introduction of DM interaction can cause the ferromagnetic spin chain to be a better quantum channel for teleportation. A minimal entanglement of the thermal state in the model is needed to realize the entanglement teleportation regardless of antiferromagnetic or ferromagnetic spin chains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.