Abstract
In this paper, we consider weak, directional and strong matrix majorizations. Namely, for square matrices A and B of the same size we say that A is weakly majorized by B if there is a row stochastic matrix X such that A = XB. Further, A is strongly majorized by B if there is a doubly stochastic matrix X such that A = XB. Finally, A is directionally majorized by B if Ax is majorized by Bx for any vector x where the usual vector majorization is used. We introduce the notion of majorization of matrix tuples which is defined as a natural generalization of matrix majorizations: for a chosen type of majorization we say that one tuple of matrices is majorized by another tuple of the same size if every matrix of the “smaller” tuple is majorized by a matrix in the same position in the “bigger” tuple. We say that a linear operator preserves majorization if it maps ordered pairs to ordered pairs and the image of the smaller element does not exceed the image of the bigger one. This paper contains a full characterization of linear operators that preserve weak, strong or directional majorization of tuples of matrices and linear operators that map tuples that are ordered with respect to strong majorization to tuples that are ordered with respect to directional majorization. We have shown that every such operator preserves respective majorization of each component. For all types of majorization we provide counterexamples that demonstrate that the inverse statement does not hold, that is if majorization of each component is preserved, majorization of tuples may not.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.