Abstract

An analysis of the preferred conformations and modes of self-association of the N-fluoren-9-methoxycarbonyl derivatives of L-alanine and α-aminoisobutyric acid was performed in solution and in the solid state using infrared absorption, 1H nuclear magnetic resonance, and X-ray diffraction. In a solvent of low polarity (deuterochloroform) non-associated and self-associated species (involving predominantly the hydroxyl and carbonyl groups of the carboxylic acid moiety) simultaneously occur. At high dilution, where self-association is absent, the amount of intramolecularly H-bonded forms, if any, should be extremely small. Z(trans) [Formula: see text]E(cis) isomerism about the amide bond of the secondary urethane moiety was observed only for the less bulky L-alanine derivative. In the solid state all H-bonding donors and acceptors of the L-alanine and α-aminoisobutyric acid derivatives take part to complex schemes of intermolecular H-bonds. In the L-alanine derivative, crystallized as monohydrate, most of the intermolecular H-bonds involve the water molecule. Intramolecular H-bonds are not observed in either compound. The conformation about the secondary urethane CO—NH bond is Z(trans) in both compounds. Both L-alanine and α-aminoisobutyric acid residues are partially folded. The observation of the long C(sp3)—O bond of the fluoren-9-yl-methoxycarbonyl moiety might contribute to explain the unexpected experimental result that this protecting group can be removed by catalytic hydrogenation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call