Abstract

In this paper we shall say “E has the (F, G) (extension) property” to mean the following: F is a subspace of the real normed linear space G, E is a real normed linear space, and any bounded linear mapping F→E has a linear extension G→E with the same bound (equivalently, every linear mapping F→E of bound 1 has a linear extension G→E with bound 1).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.