Abstract

Solvents have a significant impact on the final crystal form of organic solids during solution crystallization. The use of polarity scales such as Hildebrand solubility parameter and dielectric constant for solvent selection often proves too generalized and do not provide enough insights into the solvent–solute intermolecular interactions directly affecting crystal growth and morphology. This paper addresses the challenging task of selecting an appropriate single component solvent property index that most accurately and sufficiently characterizes crystal morphology. Cooling crystallization experiments were carried out in a wide range of solvents using ibuprofen as a model pharmaceutical compound. Subsequently, optical microscope images were used for quantitative characterization of morphology. Linear models that correlate ibuprofen crystal morphology with pure solvent properties were developed. Our results show that, in general, there is a negative linear correlation between crystal aspect ratio (morphology) and a given solvent index. Some correlations revealed significant deviations which were explained with the help of infrared spectroscopic measurements. The “ acceptance number” was identified as an index that significantly captures the ibuprofen–solvent hydrogen bonding intermolecular interactions. Predictions, using model based on acceptance number, were found to compare very well with experimentally determined aspect ratio data from the open literature. Finally, based on insights gained from this work, a flowchart which serves as a useful solvent selection guideline for crystallization of ibuprofen is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.