Abstract
AbstractThis note reviews basic techniques of linear path analysis and demonstrates, using simple examples, how causal phenomena of non-trivial character can be understood, exemplified and analyzed using diagrams and a few algebraic steps. The techniques allow for swift assessment of how various features of the model impact the phenomenon under investigation. This includes: Simpson’s paradox, case–control bias, selection bias, missing data, collider bias, reverse regression, bias amplification, near instruments, and measurement errors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.