Abstract

Experimental out-of-plane, four-points bending tests were performed on two series of three-layered Cross Laminated Timber (CLT) panels made of Calabrian Beech and Calabrian Beech and Corsican Pine respectively. The predominant failure mechanism was rolling shear alongthe innerlayer and the glue line. A linear elastic model of a three-layered, CLT panel was developed to describe the stress distribution in CLT slabs in bending, with a focus on their load-bearing performance before the propagation of cracks. In the analytical model, each timber layer was defined as an Euler-Bernoulli beam. The two glue lines were modeled using extensional springs, infinitely rigid in the direction perpendicular to the beam’s axis, and with a defined stiffness in the tangential direction. The outer layers are assumed axially flexible whilethe innerone is regarded as axially rigid. The results of the proposed model were thus compared and validated with the experimental evidence and with additional FE numerical predictions given by 3D numerical simulations carried out in Abaqus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.