Abstract
AbstractIn this article a theoretical linear modal analysis of Euler–Bernoulli L-shaped beam structures is performed by solving two sets of coupled partial differential equations of motion. The first set, with two equations, corresponds to in-plane bending motions whilst the second set with four equations corresponds to out-of-plane motions with bending and torsion. The case is also shown of a single cantilever beam taking into account rotary inertia terms. At first for the case of examination of the results for the L-shaped beam structure, an individual modal analysis is presented for four selected beams which will be used for modelling an L-shaped beam structure; in order to investigate the influence of rotary inertia terms and shear effects. Then, a theoretical and numerical modal analysis is performed for four models of the L-shaped beam structure consisting of two sets of beams, in order to examine the effect of the orientation of the secondary beam (oriented in two ways) and also shear effects. The comparison of theoretical and finite element simulations shows a good agreement for both in-plane and out-of-plane motions, which validates the theoretical analysis. This work is essential to make progress with new investigations into the nonlinear equations for the L-shaped beam structures within Nonlinear Normal Mode theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.