Abstract

Autocatalytic zymogen activation is a phenomenon of great importance for understanding some fundamental physiological processes involved in the enzyme regulation of gastrointestinal-tract enzymes, blood coagulation, fibrinolysis and the complement system. Examples of such processes are the activation of prekallikrein, trypsinogen and pepsinogen, all of which are controlled by natural proteinase inhibitors. This work studies the kinetics of a general autocatalytic zymogen activation process overlapped by two two-step irreversible inhibitions, i.e. a linear mixed irreversible inhibition. The kinetic equations for the whole course of the reaction are derived for this mechanism. In addition, we determine the corresponding kinetics for a number of particular cases of the general model analyzed, i.e. for reversible and irreversible non-competitive, competitive and uncompetitive inhibition systems which are considered particular cases of the general mechanism studied. The kinetic behavior of the system is related to a parameter, a dimensionless quantity, which shows whether the inhibition or the activation route prevails, in a similar way to that which we have previously carried out for other mechanisms. Finally, based on the kinetic equations obtained, a procedure for discriminating between the different mechanisms considered is suggested. The results of this contribution can be directly applied to most physiological autocatalytic zymogen activations in the presence of an inhibitor, allowing their complete kinetic characterization and suggesting procedures for varying the relative weight of the catalytic and inhibition routes or for changing the predominant route.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call