Abstract

This paper shows that a general multisensor unbiased linearly weighted estimation fusion essentially is the linear minimum variance (LMV) estimation with linear equality constraint, and the general estimation fusion formula is developed by extending the Gauss-Markov estimation to the random parameter under estimation. First, we formulate the problem of distributed estimation fusion in the LMV setting. In this setting, the fused estimator is a weighted sum of local estimates with a matrix weight. We show that the set of weights is optimal if and only if it is a solution of a matrix quadratic optimization problem subject to a convex linear equality constraint. Second, we present a unique solution to the above optimization problem, which depends only on the covariance matrix C k . Third, if a priori information, the expectation and covariance, of the estimated quantity is unknown, a necessary and sufficient condition for the above LMV fusion becoming the best unbiased LMV estimation with known prior information as the above is presented. We also discuss the generality and usefulness of the LMV fusion formulas developed. Finally, we provide an off-line recursion of C k for a class of multisensor linear systems with coupled measurement noises.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.