Abstract

Reaction of Mo2(pyphos)4 (1) with [MCl(CO)2]2 (M = Ir and Rh) afforded linear tetranuclear complexes of a formula Mo2M2(CO)2(Cl)2(pyphos)4 (2, M = Ir; 3, M = Rh). X-ray diffraction studies confirmed that two "MCl(CO)" fragments are introduced into both axial sites of the Mo2 core in 1 and coordinated by two PPh2 groups in a trans fashion, thereby forming a square-planar geometry around each M(I) metal. Treatment of 2 and 3 with an excess amount of tBuNC and XylNC induced dissociation of the carbonyl and chloride ligands to yield the corresponding dicationic complexes [Mo2M2(pyphos)4(tBuNC)4](Cl)2 (5a, M = Ir; 6a, M = Rh) and [Mo2M2(pyphos)4(XylNC)4](Cl)2 (7, M = Ir; 8, M = Rh). Their molecular structures were characterized by spectroscopic data as well as X-ray diffraction studies of BPh4 derivatives [Mo2M2(pyphos)4(tBuNC)4](BPh4)2 (5b, M = Ir; 6c, M = Rh), which confirmed that there is no direct sigma-bonding interaction between the M(I) atom and the Mo2 core. The M(I) atom in 5 and 6 can be oxidized by either 2 equiv of [Cp2Fe][PF6] or an equimolar amount of I2 to afford Mo(II)2M(II)2 complexes, [Mo2M2(X)2(tBuNC)4(pyphos)4]2+ in which two Mo-M(II) single bonds are formed and the bond order of the Mo-Mo moiety has been decreased to three. The Ir(I) complex 5a reacted not only with methyl iodide but also with dichloromethane to afford the 1,4-oxidative addition products [Mo2Ir2(CH3)(I)(tBuNC)4(pyphos)4](Cl)2 (13) and [Mo2Ir2(CH2Cl)(Cl)(tBuNC)4(pyphos)4](Cl)2 (15), respectively, although the corresponding reactions using the Rh(I) analogue 6 did not proceed. Kinetic analysis of the reaction with CH3I suggested that the 1,4-oxidative addition to the Ir(I) complex occurs in an SN2 reaction mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.