Abstract
This paper presents a novel global sliding mode control technique for the stabilization of a class of uncertain and nonlinear dynamic systems with perturbation. Using the Lyapunov stability theory and linear matrix inequality, some sufficient conditions are deduced to guarantee the asymptotic stabilization of the system states and to modify the robustness of the system. To improve the robust performance, an innovative reaching control law is designed to guarantee a chattering-free finite time performance under the uncertainty and nonlinearities and is optimally tuned using a modified random search algorithm. Simulation results are provided to show the effectiveness of the suggested technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.