Abstract

Verification of large programs is impossible without proof techniques that allow local reasoning and information hiding. In this paper, we take the approach of modeling the heap as a collection of partial functions with disjoint domains. We call each such partial function a linear map. Programmers may select objects from linear maps, update linear maps or transfer addresses and their contents from one linear map to another. Programmers may also declare new linear map variables and pass linear maps as arguments to procedures. The program logic prevents any of these operations from duplicating locations and thereby breaking the key heap representation invariant: the domains of all linear maps remain disjoint. Linear maps facilitate modular reasoning because programs that use them are also able to use simple, classical frame rules to preserve information about heap state across procedure calls. We illustrate our approach through examples, prove that our verification rules are sound, and show that operations on linear maps may be erased and replaced by equivalent operations on a single, global heap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.