Abstract

Let H be an infinite-dimensional complex separable Hilbert space and \( \mathcal{B}(H) \) the algebra of all bounded linear operators on H. Let \( \phi :\mathcal{B}(H) \to \mathcal{B}(H) \) be a bijective continuous unital linear map preserving generalized invertibility in both directions. Then the ideal of all compact operators is invariant under ϕ and the induced linear map on the Calkin algebra is either an automorphism or an antiautomorphism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.