Abstract

Linear logistic models with relaxed assumptions (LLRA) are a flexible tool for item-based measurement of change or multidimensional Rasch models. Their key features are to allow for multidimensional items and mutual dependencies of items as well as imposing no assumptions on the distribution of the latent trait in the population. Inference for such models becomes possible within a framework of conditional maximum likelihood estimation. In this paper we introduce and illustrate new functionality from the R package eRm for fitting, comparing and plotting of LLRA models for dichotomous and polytomous responses with any number of time points, treatment groups and categorical covariates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.