Abstract

Abstract This paper concerns with the development of a direct parameter identification procedure for a class of nonlinear reaction–diffusion equations. We assume to know the model equations with the exception of a set of constant parameters, such as diffusivity and reaction term parameters. Using the finite element method the original partial differential equation is transformed into a set of ordinary differential equations. A linear least squares method is then applied to estimate the unknown parameters by using normal equations. The measurements errors obtained following this approach are significantly lower than the error obtained by a nonlinear least squares identification procedure. In order to better understand the differences between the two approaches, a sensitivity analysis with respect to initial conditions and mesh dimension is performed. The robustness of the method is tested on noise corrupted data, showing that the linear least square method may be sensitive to perturbations in the data. The procedure is applied to two ecological models describing the dynamics of population growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.