Abstract
This paper considers the inverse problem with observed variables Y = BGX ⊕Z, where BG is the incidence matrix of a graph G, X is the vector of unknown vertex variables with a uniform prior, and Z is a noise vector with Bernoulli(e) i.i.d. entries. All variables and operations are Boolean. This model is motivated by coding, synchronization, and community detection problems. In particular, it corresponds to a stochastic block model or a correlation clustering problem with two communities and censored edges. Without noise, exact recovery of X is possible if and only the graph G is connected, with a sharp threshold at the edge probability log(n)/n for Erdős-Renyi random graphs. The first goal of this paper is to determine how the edge probability p needs to scale to allow exact recovery in the presence of noise. Defining the degree (oversampling) rate of the graph by α = np/ log(n), it is shown that exact recovery is possible if and only if α > 2/(1−2e)+o(1/(1−2e)). In other words, 2/(1−2e) is the information theoretic threshold for exact recovery at lowSNR. In addition, an efficient recovery algorithm based on semidefinite programming is proposed and shown to succeed in the threshold regime up to twice the optimal rate. Full version available in [1].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.