Abstract
Abstract Normal-mode and nonmodal growth are investigated using initial value models. The initial value problems for the Eady and a generalized Eady model (the G model) are solved with no friction and with both Ekman and interior friction. The nonmodel growth is described as either a superposition of eigenmodes or as a transfer between the “thermal” and relative vorticity parts of quasigeostrophic potential vorticity. When all the eigen-modes are neutral, the growth rate (σH>) of enstrophy is zero, though the growth rate of energy (σE>) and amplitude (σL>) may be positive. For an initial condition having large upstream tilt and constant amplitude, a period of large initial growth in the energy and amplitude is followed by either oscillatory growth and decay (when all eigenmodes are neutral) or asymptotes to a rate given by the most unstable normal mode. In Part I, the authors show that interior friction strongly damps the continuum eigenmodes; however, nonmodal growth can still be significant even when in...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.