Abstract

The flow regimes associated with a horizontal internal two-phase (liquid-vapor) flow in the presence and absence of the electric field are investigated with the linear stability analysis. The momentum interchange due to the entrainment between the two phases is included in the analysis. The presence of the electric field promotes instability by providing the electrohydrodynamic (EHD) extraction force. Qualitative stability maps for the annular two-phase flow are provided with and without the electric field presence. Onset of the instability is compared with the experimental data and it is shown that the transition between the EHD-enhanced and EHD-suppressed convective boiling heat transfer is located near the annular-to-mist transition region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.