Abstract
We study optimal approximation of stochastic integrals in the Ito sense when linear information, consisting of certain integrals of trajectories of Brownian motion, is available. Upper bounds on the nth minimal error, where n is the fixed cardinality of information, are obtained by the Wagner–Platen algorithm and are O(n − 3/2) or O(n − 2), depending on considered class of integrands. We also show that Ω(n − 2) is a lower bound which holds even for very smooth integrands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.