Abstract

There is a classical technique for determining the equilibrium probabilities ofM/G/1 type Markov chains. After transforming the equilibrium balance equations of the chain, one obtains an equivalent system of equations in analytic functions to be solved. This method requires finding all singularities of a given matrix function in the unit disk and then using them to obtain a set of linear equations in the finite number of unknown boundary probabilities. The remaining probabilities and other measures of interest are then computed from the boundary probabilities. Under certain technical assumptions, the linear independence of the resulting equations is established by a direct argument involving only elementary results from matrix theory and complex analysis. Simple conditions for the ergodicity and nonergodicity of the chain are also given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.