Abstract

We examine theoretically and experimentally the localized electrical modes existing in a bi-inductive electrical lattice containing a bulk or a surface capacitive impurity. By means of the formalism of lattice Green's functions, we are able to obtain closed-form expressions for the frequencies of the impurity (bound-state) eigenmodes and for their associated spatial profiles. This affords us a systematic understanding of how these mode properties change as a function of the system parameters. We test these analytical results against experimental measurements, in both the bulk and surface cases, and find very good agreement. Last, we turn to a series of quench experiments, where either a parameter of the lattice or the lattice geometry itself is rapidly switched between two values or configurations. In all cases, we are able to naturally explain the results of such quench experiments from the larger analytical picture that emerges as a result of the detailed characterization of the impurity-mode solution branches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.