Abstract

Reconfiguring heterogeneous modular robots in which all modules are not identical is much more time consuming than reconfiguring homogeneous ones, because ordinary heterogeneous reconfiguration is a combination of homogeneous transformation and heterogeneous permutation. While linear homogeneous transformation has been accomplished in previous research, linear heterogeneous permutation has not. This paper studies a reconfiguration algorithm for heterogeneous lattice modular robots with linear operation time cost. The algorithm is based on simultaneous tunneling and permutation, where a robot transforms its configuration via tunneling motion while permutation of each module’s position is performed simultaneously during the tunneling transformation. To achieve this, we introduce the idea of a transparent meta-module that allows modules belonging to a meta-module to pass through the spaces occupied by other meta-modules. We prove the correctness and completeness of the proposed algorithm for a 2$\times$ 2$\times$ 2 cubic meta-module-based connected robot structure. We also show examples of the reconfiguration simulations of heterogeneous modular robots by the proposed algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.