Abstract

A discrepancy persists between field-reversed configuration experiments, which are generally stable, and theoretical predictions of instability. The common consensus has been that the stability is the result of finite Larmor radius (FLR) effects. An FLR analysis is presented that finds the self-consistent displacement functions and complex frequency. This is done using the linear gyroviscous model, a fluid-based representation of FLR that allows a wide range of equilibria and modes to be examined with modest computations. The conclusion is that FLR in static FRC fails to explain the observed stability. The cause of stability must lie elsewhere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call