Abstract
A novel and high-efficiency linear frequency-modulated continuous-wave (FMCW) ladar system for synthetic aperture imaging is proposed and experimentally demonstrated. This novel system generates wide-bandwidth linear FMCW ladar signals by employing an electro-optic LiNbO3- in-phase and quadrature modulator with an effective bias controller. The effectiveness of the proposed system is experimentally validated. Optical synthetic aperture images are obtained by using two 0.41 cm aperture diameter telescopes at the distance of 1 km. The resolution of these images can reach to 4 cm. A resolution improvement by about 10 times is achieved when compared with the conventional real aperture imaging system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.