Abstract
Linear free divisors are free divisors, in the sense of K.Saito, with linear presentation matrix (example: normal crossing divisors). Using techniques of deformation theory on representations of quivers, we exhibit families of linear free divisors as discriminants in representation spaces for real Schur roots of a finite quiver. We review some basic material on quiver representations, and explain in detail how to verify whether the discriminant is a free divisor and how to determine its components and their equations, using techniques of A. Schofield. As an illustration, the linear free divisors that arise as the discriminant from the highest roots of Dynkin quivers of type E7 and E8 are treated explicitly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.