Abstract

In this paper we continue to develop the apparatus needed for the proof of the theorem announced in (11). We retain the notation of (11) together with the assumptions made there about the field of Abelian functions. This section deals with properties of more general functions holomorphic on Cn. When n = 1 the extrapolation procedure in problems of transcendence is essentially the maximum modulus principle together with the act of dividing out zeros of an analytic function. For n > 1, however, this approach is not possible, and some mild theory of several complex variables is required. This was first used in the context of transcendence by Bombieri and Lang in (2) and (12), and we now give a brief account of the basic constructions of their papers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.