Abstract

Recent work in the literature has shown that general relativity can be formulated in terms of a jet bundle which, in local coordinates, has five entries: local coordinates on Lorentzian space-time, tetrads, connection one-forms, multivelocities corresponding to the tetrads and multivelocities corresponding to the connection one-forms. The derivatives of the Lagrangian with respect to the latter class of multivelocities give rise to a set of multimomenta which naturally occur in the constraint equations. Interestingly, all the constraint equations of general relativity are linear in terms of this class of multimomenta. This construction has been then extended to complex general relativity, where Lorentzian space-time is replaced by a four-complex-dimensional complex-Riemannian manifold. One then finds a holomorphic theory where the familiar constraint equations are replaced by a set of equations linear in the holomorphic multimomenta, providing such multimomenta vanish on a family of two-complex-dimensional surfaces. In quantum gravity, the problem arises to quantize a real or a holomorphic theory on the extended space where the multimomenta can be defined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call