Abstract

We demonstrate that popular linear fixed-effects panel-data estimators are biased and inconsistent when applied in a discrete-time hazard setting, even if the data-generating process is consistent with the linear model. The bias is not just survival bias, but originates from the impossibility to transform the model such that the remaining disturbance term becomes conditional mean independent of the explanatory variables. The bias is hence present even in the absence of unobserved heterogeneity. We discuss instrumental variables estimation, using first-differences of the explanatory variables as instruments, as alternative estimation strategy. Monte Carlo simulations and an empirical application substantiate our theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.