Abstract
In this paper, we develop a series of efficient numerical schemes to solve the phase field model for homopolymer blends. The governing system is derived from the energetic variational approach of a total free energy, that consists of a nonlinear logarithmic Flory–Huggins potential, and a gradient entropy with a concentration-dependent de-Gennes type coefficient. The main challenging issue to solve this kind of models numerically is about the time marching problem, i.e., how to develop suitable temporal discretizations for the nonlinear terms in order to preserve the energy stability at the discrete level. We solve this issue in this paper, by developing the first and second order temporal approximation schemes based on the “Invariant Energy Quadratization” method, where all nonlinear terms are treated semi-explicitly. Consequently, the resulting numerical schemes lead to a symmetric positive definite linear system to be solved at each time step. The unconditional energy stabilities are further proved. Various numerical simulations of 2D and 3D are presented to demonstrate the stability and the accuracy of the proposed schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.