Abstract

The classical state-space approach to optimal estimation of stochastic processes is efficient when the driving noises are generated by martingales. In particular, the weight function of the optimal linear filter, which solves a complicated operator equation in general, simplifies to the Riccati ordinary differential equation in the martingale case. This reduction lies in the foundations of the Kalman--Bucy approach to linear optimal filtering. In this paper we consider a basic Kalman--Bucy model with noises, generated by independent fractional Brownian motions, and develop a new method of asymptotic analysis of the integro-differential filtering equation arising in this case. We establish existence of the steady-state error limit and find its asymptotic scaling in the high signal-to-noise regime. Closed form expressions are derived in a number of important cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.