Abstract
The existing support vector machines (SVMs) are all assumed that all the features of training samples have equal contributions to construct the optimal separating hyperplane. However, for a certain real-world data set, some features of it may possess more relevances to the classification information, while others may have less relevances. In this paper, the linear feature-weighted support vector machine (LFWSVM) is proposed to deal with the problem. Two phases are employed to construct the proposed model. First, the mutual information (MI) based approach is used to assign appropriate weights for each feature of the whole given data set. Second, the proposed model is trained by the samples with their features weighted by the obtained feature weight vector. Meanwhile, the feature weights are embedded in the quadratic programming through detailed theoretical deduction to obtain the dual solution to the original optimization problem. Although the calculation of feature weights may add an extra computational cost, the proposed model generally exhibits better generalization performance over the traditional support vector machine (SVM) with linear kernel function. Experimental results upon one synthetic data set and several benchmark data sets confirm the benefits in using the proposed method. Moreover, it is also shown in experiments that the proposed MI based approach to determining feature weights is superior to the other two mostly used methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.