Abstract

This paper considers the estimation problem for periodic systems with unknown measurement input and missing measurements. The missing measurements phenomenon is described by an independent and identically distributed Bernoulli process. The quality of the estimation achieved by an admissible filter is measured by a performance criterion described by the Cesaro limit of the mean square of the deviation between the remote signal and the estimated signal. By employing the minimum variance unbiased estimation technique, the periodic unbiased estimator is obtained, where the estimator gain is designed in terms of the unique periodic solution of a Lyapunov equation together with the periodic stabilizing solution of a Riccati equation. Finally, a numerical example is provided to show the effectiveness of the proposed estimation approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.