Abstract

In this paper, we explore the question of which non-linear inverse problems, which are solved by a selected regularization method, may have so-called linear a priori accuracy estimates – that is, the accuracy of corresponding approximate solutions linearly depends on the error level of the data. In particular, we prove that if such a linear estimate exists, then the inverse problem under consideration is well posed, according to Tikhonov. For linear inverse problems, we find that the existence of linear estimates lead to, under some assumptions, the well-posedness (according to Tikhonov) on the whole space of solutions. Moreover, we consider a method for solving inverse problems with guaranteed linear estimates, called the residual method on the correctness set (RMCS). The linear a priori estimates of absolute and relative accuracy for the RMCS are presented, as well as analogous a posteriori estimates. A numerical illustration of obtaining linear a priori estimates for appropriate parametric sets of solutions using RMCS is given in comparison with Tikhonov regularization. The a posteriori estimates are calculated on these parametric sets as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.