Abstract

We propose a modular electromagnetic modeling procedure for large finite electromagnetic band-gap (EBG) structures, called linear embedding via Green's operators. It is a diakoptic method based on the Huygens-Schelkunoff principle involving equivalent boundary current sources that electromagnetically characterize the enclosed domain of arbitrary shapes, as if it were a multiport system. In a cascade of embedding steps, separate reusable domains are combined to form larger domains. Device design often involves tuning local medium properties in a compact designated domain with a large environment. Through an additional embedding step the equivalent sources describing the environment can be transferred to the boundary of the designated domain, rendering subsequent design steps very fast. This two-stage optimization process is applied in the design of an EBG power splitter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.